Differential Forms
\[\newcommand{\ds}{\displaystyle} \newcommand{\curlies}[1]{\left\lbrace #1 \right\rbrace} \newcommand{\abs}[1]{\left\lvert #1 \right\rvert} \newcommand{\angles}[1]{\left\langle #1 \right\rangle} \newcommand{\inv}[1]{#1^{-1}} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\Mat}{Mat} \DeclareMathOperator{\Crit}{Crit} \newcommand{\A}{\mathcal A} \newcommand{\J}{\mathcal J} \newcommand{\RP}[1]{\R P^{#1}} \newcommand{\CP}[1]{\C P^{#1}} \newcommand{\bzero}{\mathbf 0} \newcommand{\a}{\mathbf a} \newcommand{\p}{\mathbf p} \newcommand{\u}{\mathbf u} \newcommand{\x}{\mathbf x} \newcommand{\y}{\mathbf y} \newcommand{\X}{\mathfrak X}\]Dual space
Let $E$ be a finite dimensional vector space.
[…]
Cotangent space
Let $M$ be a manifold. For $p \in M$, we define the cotangent space at $p$ to be the dual of the tangent space, i.e. \(T_p^* M = (T_p M)^*\) Elements of the cotangent space are called cotangent vectors or covectors.
For $F \in C^\infty(M, N)$, the cotangent map is the dual of the tangent map: \(\begin{align*} T_p^* F : T_{F(p)}^* N &\to T_p^* M \\ g &\to (T_p F)^* g \end{align*}\)
Differential of $f$ at $p$
For $f \in C^\infty(M)$, we define the differential of $f$ at $p$ to be the element $(df)_p \in T_p^M$ defined by $(df)_p (v) = v(f)$ for $v \in T_p M$.
Differential commutes with pullback (primitive)
For $F \in C^\infty(M, N)$ and $g \in C^\infty(N)$, we have \(d(F^* g)\big\vert_p = T^* F ((dg)_{F(p)})\)
1-forms
A 1-form on $M$ is a map \(\begin{align*} \alpha : \X(M) &\to C^\infty(M) \\ X &\mapsto \alpha(X) = \angles{\alpha, X} \end{align*}\) This is $C^\infty(M)$-linear, i.e. if $f, g \in C^\infty(M)$ and $X, Y \in \X(M)$, then \(\alpha(fX + gY) = f\alpha(X) + g\alpha(Y)\) The vector space of 1-forms on $M$ is denoted $\Omega^1(M)$.
1-forms and cotangent vectors
For any $\alpha \in \Omega^1(M)$ and $p \in M$, there exists $\alpha_p \in T_p^*(M)$ so that for all $X \in \X(M)$, \(\alpha(X)_p = \alpha_p(X_p)\) Proof.
[…]
Exterior derivative of a 1-form
If $f \in C^\infty(M)$, the exterior derivative of $f$ is the 1-form $df \in \Omega^1(M)$ defined by $\angles{df, X} = X(f)$.
- if $\alpha \in \Omega^1(M)$ and $U$ is an open subset of $M$, the restriction of $\alpha$ to $U$ is a 1-form on $U$, and $\left(a \big\vert_U\right)_p = a_p$ for $p \in U$.
- if $U \subseteq \R^m$ is open and $\alpha \in \Omega^1(U)$, then $\ds \alpha = \sum_i \alpha_i dx^i$ where $\ds \alpha_i = \alpha\left(\frac{\partial}{\partial x^i}\right)$